
HC908GP32

Evaluation Board

Lab Manual

Table of Contents

LAB INTRODUCTION ... 3

Prerequisites ... 4

Setting up the Software Environment ... 5

HC908GP32 Features ... 8

Lab 1: Racing LEDs .. 9

Lab 2: Playing the Speaker .. 11

Lab 3: Flashing LEDs ... 13

Lab 4: 4-Digit Seven-Segment Display .. 15

Lab 5: Keypad ... 18

Lab 6: Analog-to-Digital Converter ... 20

Lab 7: DS1307 Real Time Clock Display .. 22

Lab 8: LCD Display ... 25

Lab 9: Temperature Measurement & Display .. 28

Appendix 1: Evaluation Board Outline ... 31

Appendix 2: Schematics .. 32

LAB INTRODUCTION

This manual is designed to introduce the new student to the
microcontroller in a laboratory environment. It is assumed that you have
some background in microcontroller architecture and programming,
although this is not a prerequisite. A good textbook on microcontrollers as
well as some familiarity with assembly or C programming should provide
enough background to step through the exercises contained in this manual.
Most of the labs here have been originally developed using assembly
language.

The HC908GP32 is part of Motorola line of 8-bit microcontrollers. Newer
versions of these devices have been introduced over the past few years;
however, the basic methods and skills learned in these labs will be directly
applicable to a wide variety of microcontroller products designed with
various memory configurations, drive ability and power usage. As your
skills become more advanced, real-world issues such as design for low-
power consumption, wireless and internet connected systems can be
developed.

Before beginning the first labs, there is some hardware setup that will need
to occur. You will need a standard 9-pin RS232 cable connected to the
COM port of our PC. We also recommend using CodeWarrior Standard
Edition for your software platform. CodeWarrior offers a free version
(limited to 32Kbytes for C programming and unlimited assembly) of its
Integrated Development Environment simulator and debugger. The GP32
microcontroller can be programmed and debugged using this setup. See
the “Prerequisites” section immediately below for the URL to download this
software.

Prerequisites

Download ‘Special Edition: CodeWarrior for Microcontrollers’ here:
http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_SPECIALEDITIONS&tid=CWH

This program is free of charge; however, the special edition is limited to

32K code size for C programming. For assembly language, there is no code

size limit.

You will also need to following equipment for
evaluation board setup:

A. RS-232 9-pin cable to connect your PC with the evaluation board.

B. Wall mount power supply with a voltage range from 6Vdc to 30Vdc. The

on-board voltage regulator will regulate this voltage to the required 5Vdc

needed for board operation. Insure that the jumper pin at location U81 is

installed. A supply capability of 500mA should be sufficient.

C. A 4x4 keypad + ribbon cable. Insure that Pin1 from the keypad matches

Pin1 as labeled on the evaluation board. Since a 2x8 cable is used, insure

that the correct row of pins is connected on each end.

An LCD display + ribbon cable. Depending on your version of evaluation board,

you may have either a 2x16 or 2x40 LCD display. Either will work fine for the labs.

Pin connectors on the evaluation board are available for either a 1x16 LCD header

or 2x8 header. Either will work depending on the type of LCD configuration used.

Again, insure that Pin1 on the board lines up with Pin1 on the LCD.

http://www.freescale.com/lgfiles/devsuites/HC08/CW_MCU_V6_2_SE_11262008.exe?WT_TYPE=IDE%20-%20Debug,%20Compile%20and%20Build%20Tools&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=exe&WT_ASSET=Downloads
http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_SPECIALEDITIONS&tid=CWH

Setting up the Software Environment

Once CodeWarrior SE is installed on your PC, it will need to be properly configured for use with

the evaluation board. The basic software development process should take place as follows:

 Write source code using your IDE (Integrated Development Environment)

 Compile the source code into machine code

 Link this code to form an executable file

 Debug your code as needed

 Re-compile, link and develop for final executable product

In order to become familiar with the IDE environment, we will start with a simple file and go

through the steps to develop a program. After completing this exercise, you should be able to

beginning writing your own programs starting with the first lab.

Start CodeWarrior IDE. In a Windows XP environment, you can click Start -> All Programs and ..

 Freescale CodeWarrior -> CW for Microcontrollers V6.2 -> CodeWarrior IDE

 (substitute in your own version of

CodeWarrior). You will get a startup dialog

window as shown here. Click on the ‘Create

New Project’ button. This brings up a new

window where the GP32 microcontroller

option can be selected. Select ‘Mon08

Interface’ on the right. This allows the

current user configuration with the serial

port of the evaluation board. References will

be provided at the end of this document for

more extensive information on these options

as well as using the IDE in general.

Click Next. This opens new window shown

below. Check the appropriate checkbox for

using relocatable assembly. Also, name your

file and the directory where your file is to be

stored.

Figure 1: Create New Project Window

Figure 2: Select GP32 Template

Click Finish. The main project window

appears. Double-click on ‘Main.asm’.

Freescale provides a program template for the

HC08GP32 device, which appears in the

section on the right. You are now ready to

write you first code.

Let’s start with a simple program to toggle

an I/O pin on and off. We can use PORTB

(PTRB), bit 0. Your code in the assembly

window should appear as below. Only the

mainLoop section was modified with the

addition of 3 lines of code.

Once your code has been added, click the ‘Make’ icon, the grey icon (second from the right).

This compiles your program (hopefully) without

error. Now click on the debug icon (green arrow). A

new window appears that is overlayed by the

connection manager. Click on ‘Add A Connection’.

Choose Class 3 (custom). The Communications Port is COM1 in

this case (by may vary according to your PC configuration), set

at a Baud Rate of 9600. If your PC is configured to use a

different COM port, you can adjust this entry accordingly.

Figure 3: Programming Type Window

Figure 4: Source Code Window

Figure 5: Source Code Processing

Figure 6: Communication

Configuration

Click ‘Contact Target at These Settings’. A RESET or POWER CYCLE window will then appear.

Reset the microprocessor before clicking OK. The GP32 evaluation board can be reset by

pushing (and releasing) the reset button on the board located at U72. Click OK when the

window requesting the program download appears. You should now see the entire debug

window. The source code

screen is shown on the left.

Click on the single step icon

to step through your

program. With a

voltmeter, you can

measure the output

voltage change on PTB0 as

each line of code is

incremented.

Single Step Icon

Figure 7: Source Code Debugging Window

HC908GP32 Features

 The datasheet for the GP32 can be found here:
 http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC68HC908GP32.pdf

A copy of the HC908GP32

memory map is shown here for

reference. FLASH memory, where

your program will reside, begins

at address $8000. RAM address

space begins at $0040. As we

proceed through some of the

more advances lab experiments,

you will need to refer to this table

for locating addresses of interest.

Figure 8: GP32 Memory Map

Lab 1: Racing LEDs

Objective:

With this first exercise, the student will write a short program to control the 8 diodes (U92 to U99) using

the 74HC595 serial-in / parallel-out shift register. The objective will be to develop a “racing” condition

whereby one LED seems to chase the next LED as each device is lit in sequence. The 74HC595 is used

here to minimize microcontroller I/O usage. The 74HC595 devices can also be cascaded. This will be

shown in subsequent lab experiments.

Reference Material: 74HC595 Datasheet

http://www.nxp.com/acrobat_download/datasheets/74HC_HCT595_4.pdf

The relevant portions of the schematic needed for this experiment is shown below. Three
microcontroller I/O pins will be used.

PTA1 – Data
PTB3 – Storage Register Clock Input (Latch)
PTB2 – Shift Register Clock Input (Clock)

U92

Anode
1

Cathode
2

U93

Anode
1

Cathode
2

U94

Anode
1

Cathode
2

U95

Anode
1

Cathode
2

U96

Anode
1

Cathode
2

U97

Anode
1

Cathode
2

U98

Anode
1

Cathode
2

U99

LED_HLMP2/3/501

Anode
1

Cathode
2

VCC

VCC

PTB3
PTB2

PTA1

U87

MC74HC595_DIP

Q1
1

Q2
2

Q3
3

Q4
4

Q5
5

Q6
6

Q7
7

GND
8

Q7'
9MR
10SH_CP
11ST_CP
12OE
13DS
14Q0
15Vcc
16

U89

Resistors_SIP_PullupDown

Com
1R2
2R3
3R4
4R5
5R6
6R7
7R8
8R9
9R10
10

Figure 9: Schematic for 8 LED Driver

Data is clocked in to the shift register. Once 8 bits are sent, they are latched. One LED is lit per cycle,

then rotated so that the next LED in sequence is activated. The accumulator ‘A’ can be used to rotate

the bit that is high during each cycle (rola/rora). The basic structure of your program might look as

follows:

http://www.nxp.com/acrobat_download/datasheets/74HC_HCT595_4.pdf

Possible Implementation of “Racing LEDs” Algorithm

 Initialize Ports A and B by clearing; set Carry Bit (SEC), clear accumulator

 Declare a variable (Counter) to count down each cycle so 8 bits are transmitted

 Enable PTB2, PTB3 and PTA1 as outputs (use data direction registers)

 Begin Loop:

o Decrement Counter

o Rora (rotate right thru carry)

o Branch to code to clock in a ‘0’ if Z=1 (Zero bit in CCR)

o Otherwise, clock in a ‘1’

o Iterate loop until all 8 bits are transmitted

o Activate latch

o Reinitialize Counter and send in next 8 bits

Lab 2: Playing the Speaker

Reference Material: 74HC04 Datasheet
http://www.standardics.nxp.com/products/hc/datasheet/74hc04.74hct04.pdf

Objective:

In this exercise, you will play a note on the speaker using I/O pin PTD4. A simple algorithm can be used

to pulse the speaker with a square wave, thus creating a sound. More advanced applications might

include playing a song on the evaluation system with the use of a look-up table with different pitched

notes and modulating the frequency accordingly. Here we will start with the creation of one sound.

The relevant portions of the circuit are shown below. The PTD4 drives the 74HC04 buffer, which

provides a maximum Io of ±25mA. Given the inductive loading presented by the speaker, a diode clamp

is placed across the terminal for transient protection.

PTD4

R15

3.7K
D10

1N4148R201
1K

U399

Speakers

1
3
5

2
4
6

U19

74HC04

4Y
84A
95Y
105A
11

1A
1

1Y
2

2A
3

2Y
4

3A
5

3Y
6

GND
7

Vcc
14

6A
13

6Y
12

R303
100

C7

47pF

R14
1M

Y1

9.8304MHz

C6

22pF

VCC

C36

0.1uF

R13
100

OSC

Figure 10: Schematic for Speaker Driver

http://www.standardics.nxp.com/products/hc/datasheet/74hc04.74hct04.pdf

Possible Implementation for Speaker Driver Code

 Set Data Direction Resistor for Bit 4 of Port D as an output

 Drive PTD4 high

 Put in a delay (delay 1)

 Drive PTD4 low

 Additional Delay (delay 2)

 Repeat

As an additional exercise, you can experiment by modifying the duration of each delay. This will affect

the frequency or “pitch” of the sound, allowing the play of different tones. Additionally, you can make

the duration of delay 1 different from delay 2. This modifies the duty cycle of each waveform, producing

the net effect of varying the volume of the sound by modifying the duty cycle of the signal.

Lab 3: Flashing LEDs

Objective
In this lab, you will become familiar with the use of the HC08GP32 Interrupt feature. In addition, we

make use of one of the microcontroller’s built-in timers to set the time the LEDs cycle on and off.

The HC08GP32 timer registers that will be used are shown below.

Figure 11: Timer Registers

T1MODH and T1MODL together comprise a 16-bit register used as a free-running counter. When the

counter reaches a certain value, an event can take place as defined in the program. Additionally,

interrupts can be set to run a service routine. The Timer Status and Control Register (T1SC) controls

whether an interrupt is set, whether the counter is active and other counter features. The GP32 data

sheet will provide more information. The 3 low-order bits in T1SC provide prescaling for the counter by

dividing the internal bus clock a set amount as given in the table below. The internal bus clock of the

microcontroller is 25% of the external frequency set by the crystal. With the crystal operating at

9.83MHz, the internal bus clock is 2.46MHz.

Figure 12: Clock Frequency Configuration

Interrupt Vector Addresses
For the HC908GP32, interrupt vector addresses begin at location $FFDC. The interrupt vector for TIM 1

is located at $FFF2 and $FFF3. You will need to initialize this location with the address where your

program will continue. Each time the interrupt is serviced, the program will jump back to the address

located in its register.

Possible Implementation of Flashing LEDs Code

 Initialize I/O Ports, set inputs/outputs as needed

(PTA1=Data, PTB2=SH_CP, PTB3=ST_CP)

 Initialize Timer, set needed values into T1SC, T1MODH, T1MODL

 Clear Interrupts

 Set up infinite loop (this is where interrupt should return with each iteration)

Loop: BRA Loop

 Set up variable to change state after each interrupt

COM Your_variable_name

 Turn On/Off LEDs depending on state of Your_variable_name

 Clear Interrupt and repeat

Lab 4: 4-Digit Seven-Segment Display

Reference Material: 2-Digit Display Datasheet

http://www.datasheetcatalog.org/datasheet/hp/HDSP-5507.pdf

Objective:
The objective of this lab is to write a number to each of the four seven-segment displays. Each number

will be displayed simultaneously. We will make use of a single 74HC595 serial-to-parallel converter to

drive all displays. To accomplish this task, each digit can be pulsed briefly in sequence. Since this

process occurs quickly, each number will appear to be lit simultaneously. The relevant portions of the

circuit are shown below.

D

D

DP

E
DP
C

G
C

E

PTB2

PTB3

PTA6

PTA7
PTC3

PTC4
PTC2

C204

0.1uF

U3

HDSP-5621_2Digit_LED

e1
1d1
2c1
3Dp1
4e2
5d2
6g2
7c2
8Dp2
9

b2
10

a2
11

f 2
12

an2
13

an1
14

b1
15

a1
16

g1
17

f 1
18

U10

HDSP-5621_2Digit_LED

e1
1d1
2c1
3Dp1
4e2
5d2
6g2
7c2
8Dp2
9

b2
10

a2
11

f 2
12

an2
13

an1
14

b1
15

a1
16

g1
17

f 1
18

U5

Resistors_SIP

P1
1 P2
2 P3
3 P4
4 P5
5 P6
6 P7
7 P8
8 P9
9 P10

10

U1

Resistors_SIP

P1
1 P2
2 P3
3 P4
4 P5
5 P6
6 P7
7 P8
8 P9
9 P10

10
U2

MC74HC595_DIP

Q1
1

Q2
2

Q3
3

Q4
4

Q5
5

Q6
6

Q7
7

GND
8

Q7'
9MR
10SH_CP
11ST_CP
12OE
13DS
14Q0
15Vcc
16

VCC

VCC

F

G
A
B DP

C
D

E

B
A
F

DP
C
G
D
E

B
A
F

B
A
G
F

For each digit LED, there is a corresponding anode which is common to all other diodes comprising each

segment. By switching on/off each common anode (AN1/AN2), the display can be controlled. The pin-

out configuration for the 2-digit LED structure is shown below.

Figure 13: Schematic for 2-Digit LED Driver

http://www.datasheetcatalog.org/datasheet/hp/HDSP-5507.pdf

PIN FUNCTION
 1 E Cathode No. 1

2 D Cathode No. 1

3 C Cathode No. 1

4 DP Cathode No. 1

5 E Cathode No. 1

6 D Cathode No. 2

7 G Cathode No. 2

8 C Cathode No. 2

9 DP Cathode No. 2

10 B Cathode No. 2

11 A Cathode No. 2

12 F Cathode No. 2

13 Digit No. 2 Anode
 14 Digit No. 1 Anode
 15 B Cathode No. 1
 16 A Cathode No. 1
 17 G Cathode No. 1
 18 F Cathode No. 1

This table shows the various pin-outs for the 7-segment LED displays. See the

configuration on the right with the various ‘Q’ designations (outputs from the

74HC595 converter). Since we are using a common anode typology, setting a ‘0’

to any segment results in lighting the LED. For example, in order to display the

number ‘4’ on the LED, the number $D4 will need to be output.

Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

1 1 0 1 0 1 0 0

Figure 16: 7-Segment Display Mapping for Number ‘4’

You can make a look-up table comprising the other numbers for your display.

Figure 14: 2-Digit LED Pinout

Figure 15: 7-

Segment Display

Mapping

Possible Implementation for 7-Segment LED Display

 Initialize all I/O pins to be used

 Load the accumulator with the number to be displayed

 Transmit the 8 bits into the 74HC595 and latch

 Turn on AN1

 Turn off AN1

 Transmit next 8 bits representing 2nd number

 Turn on AN2

 Turn off AN2

 …do the same for AN3 and AN4

 Loop back and repeat

 Lab 5: Keypad

 Objective:
 This lab introduces the 4x4 keypad. Each key has a momentary contact switch connected to an
 intersection of row and column wires. When a key is pressed, the corresponding row and
 column is shorted. The microcontroller can continually scan the rows/columns to identify the
 short and therefore the corresponding key. This method is widely used due to the savings in
 numbers of I/O pins required. See the illustration below for the keypad setup.

After all outputs are set high, each input (row) is set to ‘0’ in sequence to determine if a key was

pressed. This cycle continues repeatedly until a key is pressed. A lookup table can be used to

identify each key with a number (or letter). This character can then be stored into a variable to

test the functionality of your code.

PTA2

PTA4

PTA6

J2

Key pad_Header_1x8

1
2
3
4
5
6
7
8

PTD4
PTD5

PTA1

PTA3

PTA5

Figure 17: Keypad Configuration

The pull-up resistors shown in the figure above for the columns can be enabled internally within

the microcontroller. See the PTAPUE register below for the correct register to use. For each

pull-up resistor enabled (with a logic ‘1’ written to the register), the corresponding DDRA

register bit will need to be set as an input with a logic ‘0’.

Possible Implementation for 4x4 Keypad

Initialize all I/O pins used

Enable pull-up resistors

Set outputs (rows) high

Load Index Register with look-up table starting address

Set Row 1 to ‘0’

Search to see if key was pressed

If not, set Row 1 to ‘1’ and Row 2 to ‘0’

Repeat for each row

If key pressed, search look-up table for number using H:X

Figure 18: Internal Pull-Up Resistor Register

 Lab 6: Analog-to-Digital Converter

 Objective:
In this lab, the HC08GP32’s ADC will be used. Using

the on-board potentiometer located at U15, a voltage

will be dialed in between 0 and 5 volts. This voltage

will then be displayed in hex format using the 8

individual LEDs. The digital scale representing this

voltage range is 00h to FFh. For example, a voltage of

2.5V would be represented as 128d or 80h. In binary

form, this translates to 0100 0000. With a 2.5V

output, the 7th diode (D11) will be the only one lit. The

relevant circuit is shown on the right.

The ADC pins on the HC08GP32 are shared with PTB0 to PTB7 (AD0 to AD7 respectively). We

use the ADC Status and Control Register (show below) to set the parameters for the ADC.

This register allows settings for continuous conversions, flags being set when conversions are

completed, channel select bits, etc. See the HC08GP32 datasheet for more information.

There is also an ADC register called ADCLK. This register is used to set the clock frequency for

the ADC. It is recommended by the manufacturer that the clock frequency be set to 1 MHz

(divide by 8). This can be done using appropriate settings for ADIV0, ADIV1 and ADIV2.

R29
1K

PTB0/AD0

U398

P
o

te
n

ti
o
m

e
te

r

2
4

1
5

3

VCC

ADC Clock Register (ADCLK)

ADC Status & Control Register (ADSCR)

FIgure 19: ADC Schematic

Figure 20: ADSCR Status and Control Register for ADC

Figure 21: ADC Clock Register

The resulting measurement is then written into the ADR (ADC Data Register).

Possible Implementation for ADC and LED Display

 Initialize ADSCR and ADCLK

 Begin ADR conversion

 Delay and read ADR into accumulator

 Shift accumulator contents into 74HC595 converter for LED display

 Lab 7: DS1307 Real Time Clock Display

 Objective:

 This lab will use the DS1307 RTC. For this experiment, a timer will be created and displayed on
 the 2-digit LEDs. The lower 2 digits will show seconds, while the third digit displays minutes. To
 use the I/O pins efficiently, a single 8-bit output is used for all 3 digits by pulsing each digit
 individually. The DS1307 uses an I2C interface. In order to communicate with the device, we will
 use PTE0 and PTE1 in a “bit bang” manner to clock in the data.

 Reference Material: DS1307 Datasheet

 http://datasheets.maxim-ic.com/en/ds/DS1307.pdf

 The relevant schematic section for this circuit is shown below. HC08GP32 ports PTE0 and PTE1
 will be used to drive the RTC SCL and SDA pins respectively.

S

s

s

T

The I2C interface uses 2 bidirectional open-drain lines, Serial Data (SDA) and Serial Clock (CLK).

These lines are configured with pull-up resistors. Data is initially transferred by the

microcontroller by a change in state of the data line (from HIGH to LOW), while the clock is kept

HIGH. Further information on the I2C protocol can be found in the DS1307 datasheet.

Each time the DS1307 is written or read in the start condition, the RTC’s address must be sent by

the microcontroller (master). The address is 1101 0000 or $D0 for a write. Alternatively, 1101

0001 or $D1 is sent if the microcontroller expects to read the RTC registers. An illustration of

this method is shown below.

R28
10K

VCC

PTE1

U122
Battery _BR1225A/FA_Vert

P
o
s
3
V

1
G

n
d

2

Batt

PTE0

U22

32kHz_XTAL

X1
1

X2
2

VCC

SQW_out

U88

DS1307_PDIP

X1
1

X2
2

Vbat
3

GND
4

SDA
5SCL
6SQW
7Vcc
8

R30
10K R31

10K

R32
1K

R34
1K

C208

0.1uF

Figure 22: Real-Time Clock (RTC) Schematic

http://datasheets.maxim-ic.com/en/ds/DS1307.pdf

The RTC registers available with the DS1307 are shown below. RTC registers are available at locations

00h to 07h. The DS1307 also maintains available RAM located at address locations 08h to 3Fh. For this

exercise, we will only be reading the seconds and minutes register for display on the 7-segment LEDs.

Figure 23: Read/Write Instructions to RTC

Figure 24: Register Mapping for DS1307 RTC

Keep in mind that the register pointer for the DS1307 will need to be reset each time that seconds are

read. Otherwise, it will increment to $3F with each byte written or read.

Although not implemented in this exercise, the DS1307 also maintains a square wave generator. The

control for this function is located in the Control Register (07h). Here, the square wave can be enabled

at various user-selectable output frequencies. A header is located on the evaluation board for use of

the square wave function.

Possible Implementation for DS1307 RTC Display

 Initialize. Make PTA6,PTA7,PTB2,PTC2,PTC3,PTC4 outputs

Initialize RTC. Bring PRE0, PTE1 outputs low

 Start RTC. (SDA/SCL high, then bring SDA low; SCL then brought low)

 Load accumulator with DS1307 WRITE address ($D0) and send to RTC

 Clock in $00 several times to initialize first few registers (seconds/minutes)

 Clock in STOP byte to end serial transfer

 Initialize pointer to point to first register $00

 Clock in START byte

 Clock in READ byte ($D1)

 Read seconds register and store in variable location

 Read minutes register and store in variable location

 Clock in Last RX byte

 Clock in STOP byte to end serial transfer

 Initialize point to point to first register $00

 Display seconds/minutes on 7-segment LED display

 Repeat loop to refresh seconds/minutes

Lab 8: LCD Display

Reference Material: HD44780 LCD Controller Data Sheet

http://web.media.mit.edu/~ayah/documents/hd44780u.pdf

Objective:
In this lab, you will create a 2 line message for display on the evaluation board’s LCD display. The

HD44780 controller chip is commonly used on

many character LCDs. Knowledge of the

HD44780 will serve as a good foundation for

developing your code.

 A copy of the relevant portions of the LCD

circuit is shown here. This graphics show the

1x16 pin configuration (J3). Identical pin-outs

are used for the 2x8 LCD port (J44) located

adjacent to the 1x16. To minimize I/O usage,

we will use only 4 pins to input the data:

PTB3, PTB4, PTB5 and PTB6. Two control

lines are used, RS (Register Select) and EN

(Enable). The RW (Read/Write) line is tied

low, which sets up the LCD as a write-only

device.

The EN line is used to prepare the LCD for

receiving data. To send data to the LCD, this

line must be low. With EN low, you can set the RS line or begin sending data. When ready to transmit,

bring EN high. At the end of the transmission, EN is brought low.

When RS is low, the data is considered to be a command or instruction. For sending data to be
displayed, keep RS high. A set of commands/instructions is shown in the table below.

PTC1

PTB6

PTB4

E

J3

HEADER16

P1
1

P2
2

P3
3

P4
4

P5
5

P6
6

P7
7

P8
8

P9
9

P10
10

P11
11

P12
12

P13
13

P14
14

P15
15

P16
16

PTC0

PTB5

PTB7
D7
D6
D5
D4

R/W
RS

VCC

D1

1N4148

VCC

C81

0.1uF

VBplus

VCC

R19
10K

R20
1K

Figure 25: Schematic for LCD Circuit

http://web.media.mit.edu/~ayah/documents/hd44780u.pdf

For initializing the LCD, a good tutorial for the sequence of bytes to transmit can be found here:

http://www.doc.ic.ac.uk/~ih/doc/lcd/initiali.html

Keep in mind the delay times needed between transmissions. You can use the timer (TIM) algorithm

coded in earlier labs for this purpose.

To display your message, you may want to store your ASCII string into consecutive bytes of memory with

the directive ‘FCC’. Code would look something like this:

msg1 FCC ‘ My Message 1 ’ ; show message top line

msg2 FCC ‘ My Message 2 ‘ ; show message bottom line

The first message can then be loaded into the H:X register with characters displayed by moving each

character in sequence to be transmitted. A useful instruction might be -

mov x+,PTB

PTB can then be shifted one bit at a time for sending to the LCD.

Figure 26: LCD Function Instructions

http://www.doc.ic.ac.uk/~ih/doc/lcd/initiali.html

Possible Implementation for DS1307 RTC Display

 Initialize I/O pins

 Initialize LCD for using 4-bit interface, 2 lines and 5x7 format. To input data,

each 4-bit set is entered twice to make up the 8-bit instruction/dataset

 Load first message for printing to line 1 of the LCD into H:X

 Transmit data to the LCD. The ASL instruction may be helpful for this.

 Assume 16 characters per line

 Jump to the next line and transmit message #2

 Optional: set RESET low and turn cursor off

 Note: for all these instructions, insure that the proper delay times are observed.

Lab 9: Temperature Measurement & Display

Objective:

 To measure temperature in °C for display on 2 digits of the 7-segment display. The DS1822
thermometer will be used. Produced by Dallas Semi, this device uses only one I/O pin. Thermometer
resolution is user selectable for 9-bit to 12-bit accuracy. To simplify the coding for the display, only 8
bits will be used (ignoring any fractional resolution lower than 1 degree). Additionally, it will be
assumed that only positive temperatures are being measured, i.e. ≥ 0 °C. Precise timing control will
need to be utilized to communicate with this device.

Reference Material: DS1822 Data Sheet

http://datasheets.maxim-ic.com/en/ds/DS1822.pdf
 A copy of the relevant circuit for driving the DS1822 is

shown here. As mentioned, there is only one I/O pin

needed. In some cases, the DS1822 can be powered by

the I/O line itself; however, in this example we will use

the 5V supply. A weak pullup resistor is attached to the

data line to keep the port high in the absence of external

input. Once a temperature measurement is taken, it is

stored in the 2-byte temperature register located in the

lower part of the “scratchpad” memory.

The temperature register format is shown here.

During the DS1822’s initialization, any temperature resolution can be set (12-bit to 9-bit). However, we

will only be using 8-bits for display. This includes bits 11 to bit 4 inclusive. Since bit 11 is ‘0’ for all

positive temperatures, only the 7 bits from bits 10 to 4 will be relevant for this application. See the

temperature table below for more information.

VCC

VCC

R27
4.7K

PTB1

C13
0.1uF

U24

DS1822DigitalTempSens

Gnd
1

DQ
2

Vdd
3

Figure 27: DS1822 Temperature Circuit Schematic

Figure 28: DS1822 Temperature Registers

http://datasheets.maxim-ic.com/en/ds/DS1822.pdf

As shown, the least significant 4 bits only represent fractional degrees and can be ignored. The

temperature can then be directly read from the hex output. For instance, the highest temperature

07D0h represents 125 °C (after stripping off the lower 4 bits). Once the temperature is read, a binary-

to-BCD conversion can be done for display.

In the initial debug phase of coding this example, it might be helpful to do a read and display of the

DS1822 temperature register without actually doing a temperature conversion. As seen with the

asterisk in the above table, the DS1822 powers up to a default temperature setting of +85 °C. Once this

temperature can be reliably displayed, you could proceed with the next step of generating an actual

temperature.

There are 3 steps which must be followed for any transaction sequence. These include:

Initialization

ROM Command

Function Command

The ROM Command can be skipped. However, CCh must be sent after initialization to inform the device

that ROM commands are being skipped. You could then proceed to issue a Function Command.

Before the temperature measurements can be displayed, they will need to be converted to BCD (Binary

Coded Decimal). For example, the hex number 1Eh (30d) cannot be displayed as is on the 7-segment

Figure 29: DS1822 Temperature Table

LED display as a decimal number. However, once converted to BCD, each digit (4 bits each) can be

shown.

The Binary-to-BCD conversion can take place by dividing the

binary by 100d or 64h (or an alternate power of 10 depending on

the size of the number to be converted). The remainder is then

divided by the next lower power of 10. The quotients are then captured for eventual display of the

decimal equivalent. See the table on the right for an illustration of converting 07Dh to its decimal

equivalent of 125d. In this example, 125 is divided by 100 to give a quotient of 1 with a remainder of 25.

The numbers in the table here represent the hex equivalent of this division.

Possible Implementation for DS1307 RTC Display

Initialize I/O, clear registers A, X, H and whatever variables are to be used

Reset the DS1822. Write ‘0’ on the data line, delay and read the ACK. Confirm reset functional.

Transmit CCh (skip ROM)

Transmit 44h (compute temperature)

Reset DS1822.

Transmit CCh (skip ROM)

Transmit BEh (instruct DS1822 that a read scratchpad will follow)

Read lower temperature register and store in variable

Read higher temperature register and store in variable

Prepare temperature measurements for display

(you should have the temperature number stored in hex format in a variable)

Perform a binary-to-BCD conversion

Display

Quotient Remainder

07D/64 = 1 + 19

19/A = 2 + 5
5/1 = 5 + 0

Appendix 1: Evaluation Board Outline

Appendix 2: Schematics

