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Abstract 
Real-time object tracking systems must be capable of tracking an object subject to abrupt 
changes in motion and appearance.  Model uncertainty is inherent in the tracking process 
where the only information available may be initial object appearance and position.  The 
constraint for real-time tracking applications reduces the applicability of online detect and 
tracking methods such as CNN.  The model may also suffer from variations due to impediments 
such as physical occlusions, object deformations, resolution changes, rotations and random 
noise.  These noise impediments can lead to inaccurate measurements and ultimately loss of 
track.  To maintain frame-to-frame tracking, a Kalman filter is proposed.  Kalman filters have 
been employed extensively for tracking, but lose accuracy (or become unstable) due to 
mismatch between a priori noise estimates and measurements.  However, developing 
appropriate model parameters for the Kalman filter is a challenge without explicit knowledge of 
the tracked object and the environment in which it is observed.   A cost function is therefore 
designed to minimize this discrepancy by adaptively updating the Kalman model based on a 
confidence function derived from the feature descriptor.  To demonstrate the approach, the 
Histogram of Oriented Gradients (HOG) is used as the descriptor to profile the object according 
to its distribution of gradients.  This method is extensible to other feature descriptors where a 
quantitative analysis can be made for measured object detection and position.  By constantly 
updating the Kalman model based on relative measurement confidence, the tracking 
performance is improved with more accurate position estimates when compared with Kalman 
filters with invariant model parameters.    Online video datasets with ground truth are used to 
validate the effectiveness of the proposed algorithm.      

 
Introduction 
Realtime object tracking is an important component in many computer vision applications such 
as driver assistance, traffic monitoring [1],[2], surveillance [3],[4], robotics, human-computer 
interaction [5], smart homes [6] and medical imaging [7].   Object detection and tracking 
involves determination of position and size of the target object in each frame of a video 
sequence.  Difficulties in tracking include changes in object appearance, background variations, 
occlusions, rotation, scale and impulse noise [8].  Occlusions in particular have been heavily 
researched due to their common occurrence in many tracking applications [9].  Re-acquisition is 
also problematic once the object position is lost.  In most cases, system requirements are not 
well defined due to a lack of prior knowledge.   

Given the initial state of the target object (position and size) in the first video frame, the goal is 
to accurately  estimate  states of the target in subsequent frames.  The camera may be either 
stationary or non-stationary.  To model the object, a feature detector is used.  For HOG, 
features are described with a gradient vector.  This vector is then used in subsequent frames to 
scan a detection window (patch) searching for the position providing the highest correlation 



with the reference vector in a maximum likelihood sense.  In this process the gradient vector 
senses the environmental information not only for the object of interest, but also for other 
objects and the general background throughout the detection window.  This is important when 
trackers can be distracted by regions containing objects of similar appearance to the target 
object.  A robust application must therefore sense activity surrounding the target and be 
invariant to constant background changes due to a moving camera and a target in motion [10]. 

Information obtained by the HOG measurement response is used to inform a Kalman filter 
tracker about abrupt changes in position, occlusions, deformations and the probability that the 
measured object position is in fact correct.  This information is used to adaptively update the 
Kalman model estimation. 

Simulations are conducted showing the impact on tracking accuracy when the Kalman model 
diverges from object motion predictions.  Accuracy here is defined as the Euclidian distance 
between object position estimates and ground truth.  An in-depth analysis is then performed 
showing the degree to which object detection accuracy varies as a function of feature detector 
measurement confidence.   

Our method of adaptively updating the Kalman model estimates is tested experimentally using 
a fully annotated online benchmark video dataset library VOT14 [12] .  This collection includes 
fully-annotated videos with noise impediments including low resolution (LR), illumination 
variation (IV), occlusion (OCC), deformation (DEF), in-pane rotation (IPR), out-of-plane rotation 
(OPR), background clutter (BC), motion blur (MB) and fast motion (FM).   Ground truth 
coordinates are also provided for all frames in each of the videos.    

 
Related Work 
In [13], a robust Kalman filter is introduced by multiplying  the Kalman gain by a constant 
derived from previous tracking events.  The constant is used when the correction departs from 
the model prediction.  However, this approach is limited by proper setting of the constant when 
noise is present.  Heuristic approaches have also been used for determining Kalman gain [14] 
and [15] but suffer when future events are independent of past experience.  The tuning and 
performance of these estimators are often obtained from simulation or empirical results [16].  
However, these methods require a priori knowledge of state measurement and process models 
[17].  

The use of accelerometer sensors have been introduced to define Kalman model parameters 
such as gain in order to minimize model error [18].  Other sensors have been employed using 
additional Kalman filters to minimize sensor perturbations, using the output of one KF into an 
Extended Kalman Filter for more precise model estimations [19],[20],[21]. 

Support Vector Machines have been used for supervised learning classification.  However, 
SVMs cannot be used for objects which may be unknown until the tracking process begins.  



SVMs also require extensive labelling and offline training, making them difficult to use for real-
time applications. 

Self-training algorithms have been introduced which first use a trained classifier to discriminate 
between object and background [22], [23], [24].  The classifier in then updated over time to 
account for object appearance changes.  However, when errors occur in the updating process, 
the errors may be propagated thus causing the process to become unstable. This error drifting 
may then eventually cause loss of track.  Self-training is also subject to outlier errors. 

For nonlinear systems, various modifications of the Kalman filter have been proposed.  The 
Extended Kalman filter (EKF) is a nonlinear approximation of the Kalman filter that assumes 
small estimation errors and approximates them to calculate its covariance matrix.  EKF is 
vulnerable to linearization errors, which can cause not only poor performance but also 
divergence [25], [26],[27].  The EKF is also difficult to evaluate in a complex system [28]. The 
Unscented Kalman filter (UKF) performs better than EKF in many situations, but is not 
applicable for real-time tracking due to its computational complexity (cubic in the size of the 
state vector) [29].   

Our methods for tracking overcome the problems in the various approaches outlined in this 
section.  The confidence in how well the object is tracked is derived from the HOG analysis.  
This information is available before the Kalman filter makes its object location estimate in each 
video frame.  This overcomes the problem with modifying Kalman gain based only on prior 
history, allowing improved tracking when objects make unanticipated position changes.   

The importance of a priori knowledge of the object and its environment is also reduced with 
our method.  In many real-time situations, the Kalman filter may quickly  become unstable 
when the model diverges from the actual environment.  A real-time adaptive method is used 
here to overcome this problem by constantly updating the filter according to actual 
measurements by the discriminator.  The HOG response in essence provides the Kalman filter 
with an improved estimate of the environment. 

Our method allows for real-time tracking of an object presented in the first frame.  This 
overcomes the problem inherent with machine learning algorithms that use offline or a 
combination of offline/online learning algorithms to develop a model for the object to be 
tracked. 

 
Methods of Classification – A Brief Description for Real-time Analysis 
 
The ability to successfully track an object is contingent on how well the object differs from its 
background.  With objects whose appearance is similar to the background, a successful track 
may require prior knowledge of expected motion.  Use of online adaptive feature selection has 



been studied whereby features used are selected based on what best distinguishes between 
object and background [30] .   

Unfortunately, object appearance changes and movements are difficult to model and may be 
highly non-linear.  Various methods have been used to overcome appearance changes including 
Eigenfiltering  [31] and Condensation [32].  These are generative trackers that use object 
information only, ignoring the background.   

A large variety of descriptors have been described for object modelling [33],[34],[35].  Robust 
classifiers such as SIFT (Shape Invariant Feature Transform), SURF (Speeded Up Robust 
Features) , Harris Corners and HOG (Histogram Oriented Gradients) are a few descriptors that 
have been successfully used for object recognition and tracking.   

Both SIFT [36] and SURF [37] detect interest points and define a method for creating an 
invariant descriptor.  The descriptors match these interest points, comparing a large number of 
features in images whose objects may be subject to scale changes, rotation and illumination.  
Keypoints (or local features) are selected based on regions showing larger gradients.  These 
include corners, edges and intersecting lines where brightness changes are apparent.   Harris 
Corners uses feature descriptor methods based on edge and corner detection [38].   

Various improvements to the SIFT descriptor include shifting Gradient Location-Orientation 
Histogram (sGLOH) [39] ,shape context [40] and Space-Time Interest Points (STIP) [41].  
Improvements to the Harris detector include GFTT [42], which is often used in tracking 
applications [43]. 

The probability of a correct match between an object in two images is determined given the 
accuracy of the fit, number of feature points and an assessment of the possibilities for false 
matches.  Ability to probe the relative accuracy of a match makes these detectors a good fit for 
the innovation for creating confidence functions for adaptive Kalman model updates. 

HOG is used in this report to illustrate advantages in using detection confidence to inform a 
Kalman filter for object tracking.  However, this innovation is extensible to other feature 
description methods as outlined above.  A key determinant is the ability to quantify the 
probability that an object match is correct.   

Histogram of Oriented Gradients (HOG) is a feature detector used predominately for object 
characterization.  HOG is similar to SIFT, edge detectors and shape contexts; however, HOG 
differs in that histograms are normalized and overlap a detection area in order to enhance 
accuracy.  Changes in illumination are also mitigated via the normalization process.  Object 
features are extracted and characterized according to their gradient distribution. For object 
tracking, these distributions are then compared to a region of interest in subsequent frames to 
determine a best fit for match.  The probability of the match being correct is determined by 
how well the object’s gradients correlate between images. 



 
Proposed Work 
In this report a HOG classifier is used to scan the patch area in each video frame captured by a 
non-static camera.  Targets include object classes such as pedestrians, drones, projectiles and 
moving vehicles.  From this process gradient models are developed for both target and 
surrounding environment.  The scanning process used by the HOG classifier provides a response 
array of correlation results detailing the relative likelihood of a match to the target object.  The 
HOG response is analyzed to determine the maximum response which in turn correlates to 
object position.  Information from the HOG response matrix is also used to inform the 
confidence level in the accuracy of the HOG measurement.  A confidence factor is then 
developed from analysis of the response matrix. 

Object position measurements and confidence factor are combined into a cost function which 
is then used by a Kalman filter tracker to adaptively update its model in real-time.  The cost 
function takes into account various unforeseen noise impediments.  By probabilistically 
estimating motion state and measurement error, the resulting tracking-by-detection algorithm 
robustly tracks objects in complex backgrounds with occlusions and other noise impediments. 

This report is organized into several sections. 

1. Detailed analysis of HOG methodology for object measurements and development of a 
confidence factor method to determine confidence in measurement 

2. Kalman filter analysis for object tracking.  Discussion of problems using Kalman filter for 
object tracking. 

3. Analysis of results and discussion of stability and performance. 
4. Conclusion 

 

Histogram of Oriented Gradients Classifier  (HOG) 
The Histogram Oriented Gradient detector was introduced by Dalal and Triggs at the CVPR 
conference in 2005 [44].  HOG remains a popular feature detector due to its robustness to 
various impediments such as low lighting, blur, scale and illumination variations [45].  

The series of steps used for creating the detector are shown in Figure 1 below.     



 

FIGURE 1 - HOG CALCULATION ANALYSIS 

 
To form the histograms, each image is divided into a series of 8x8 pixel cells.  Each cell is 
grouped with its adjacent cells to form blocks consisting of 4 cells each.  The histograms contain 
nine bins, each bin representing 20 degrees.  Gradients are computed by performing 
calculations at each cell window as it slides across the image.  For purposes of illustration, an 
image size of 64x128 pixels is used.  There is a 50% overlap (stride) as the cell moves through 
each row and column. Figure 2 illustrates this process. 



 

FIGURE 2 - HOG HISTOGRAM DESIGN 

 
 
Histograms are calculated for each block, mapping the 64 pixels in each cell to one of nine bins 
in the histogram.  The magnitude of each gradient is reflected by the contribution to each bin.  
Depending on orientation, the magnitude values are added to the corresponding gradient bin.  
Calculations for the magnitude and gradient values are shown below.  (m,n) refers to the pixel 
position in the cell corresponding to row and column positions respectively.   
 
Gradient Vector Calculations 
 

 𝐼𝐼ℎ(𝑚𝑚, 𝑛𝑛)  =  𝐼𝐼𝑘𝑘(𝑚𝑚 + 1,𝑛𝑛)  −  𝐼𝐼𝑘𝑘(𝑚𝑚 −  1,𝑛𝑛)  ∀(𝑚𝑚,𝑛𝑛) 1 
 
 

 𝐼𝐼𝑣𝑣(𝑚𝑚,𝑛𝑛)  =  𝐼𝐼𝑘𝑘(𝑚𝑚, 𝑛𝑛 + 1) −  𝐼𝐼𝑘𝑘(𝑚𝑚, 𝑛𝑛 −  1)  ∀(𝑚𝑚,𝑛𝑛) 2 



  
Gradient Magnitude 

 

 𝑀𝑀𝑘𝑘(𝑚𝑚, 𝑛𝑛)  =  �𝐼𝐼ℎ(𝑚𝑚, 𝑛𝑛)2  + 𝐼𝐼𝑣𝑣(𝑚𝑚,𝑛𝑛)2   ∀(𝑚𝑚,𝑛𝑛) 3 
 
 

Gradient Direction 

 𝜃𝜃𝑘𝑘(𝑚𝑚,𝑛𝑛)  =  𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝐼𝐼𝑣𝑣(𝑚𝑚,𝑛𝑛)
𝐼𝐼ℎ(𝑚𝑚,𝑛𝑛)

�    ∀(𝑚𝑚,𝑛𝑛) 
4 

 

An example for gradient values for each of the cell positions is shown below.  Magnitude values 
are entered into each histogram bin based on orientation (gradient direction).  Magnitudes 
which do not fall directly into the center of a bin are added into the two adjacent bins.  In the 
example shown here, the gradient magnitude of 22 falls half way between the 60 degree and 
80 degree bins.  Therefore, one-half the magnitude is entered into each bin.  See Figure 3. 

 

FIGURE 3 - HOG GRADIENT CALCULATION 

 
 
Normalization 
L2-norm is used for normalization.  Each set of four cells is formed into blocks by concatenating 
the histograms of the four cells within the block.  This block normalization is performed by 
concatenating the histograms of four cells within the block into a vector with 36 components (4 
histograms x 9 bins per histogram). Divide this vector by its magnitude to normalize it.   

This process is  outlined by Dalal and Triggs for each block and is illustrated in equation 5. 
 

 

 



 𝜐𝜐𝑖𝑖∗ =   𝜐𝜐𝑖𝑖
�� 𝜐𝜐𝑖𝑖2

𝑘𝑘
𝑖𝑖=1 +  𝜖𝜖�

 

 

5 

 

 
 
where i is the individual pixel in the block, k equals the number of pixels in the block and ε is an 
insignificant constant which prevents division by zero.  𝜐𝜐𝑖𝑖 and 𝜐𝜐𝑖𝑖∗ are the normalized gradient 
and the original gradient magnitude respectively for each pixel i. 

 

Normalization Detail 
Normalization provides the HOG classifier with increased robustness to illumination and 
contrast changes.  An example is shown below for additive and multiplicative intensity changes.   

Given the orientation of pixel values shown below,  

 122  
150  58 

 30  
 
the magnitude in the x and y directions is calculated.  
magnitude- X direction gradient:  150 - 58 = 92 
magnitude- Y direction gradient:  122 - 30 = 92 

𝑀𝑀(𝑥𝑥,𝑦𝑦)  =  130.1 =  �922 + 922 

If a value of 10 is added to each pixel value (suggesting an intensity change),     

 132  
160  68 

 40  
 

the same magnitude in the X direction and magnitude in the Y direction gradients are obtained.   

However, if each value is multiplied by 2, a different value is calculated. 

 244  
300  116 

 60  
 



magnitude- X direction gradient:  300 - 116 = 184 
magnitude- Y direction gradient:   244 - 60  = 184 

     
𝑀𝑀(𝑥𝑥,𝑦𝑦)  =  260.2 =  �1842 + 1842 

If you divide all vectors by their respective magnitudes, then each magnitude- X direction and 
magnitude- Y direction gradient is equal to 0.707.  Normalization in effect makes the detector 
more invariant to contrast changes. 

 

Our Approach 
 
Using a HOG feature detector, a detection window (patch) is scanned for each video frame.  
This removes the need for scanning an entire image, thus minimizing computation time for real-
time applications.  Accurate positioning of the object in each frame thus becomes critical to the 
success of the tracking process.  Loss of track occurs when objects fall outside the patch region.  
Unless alternative methods are used, tracking may be lost forever.   Targets include object 
classes such as pedestrians, drones, projectiles and moving vehicles.   

From this scanning process gradient models are developed for both target and surrounding 
environment in the patch area.  The scanning process used by the HOG classifier provides a 
response array of correlation results detailing how well each section of the patch matches the 
object of interest.  Figure 4 shows the patch area and target location.  Video frame shows target 
and detection window.  In this example, the detection window is 2.5 times larger than the 
target object. 

 



 

FIGURE 4 - TARGET AND PATCH POSITIONS ILLUSTRATED 

 

A reference or ground-truth target is provided in the initial frame.  An appearance model is 
then created defining the object by a vector of gradients.  For subsequent frames, this 
reference model is scanned across multiple sections of the patch area to search for the object 
whose appearance is most similar to the reference.  For each measurement, correlation values 
are obtained by multiplying the reference vector against each candidate vector.  The resulting 
vector is summed, providing a quantitative indication of how well the sample appearance 
compares to the reference.  This number represents the confidence that the computed target 
position is accurate from a Euclidean distance perspective. 

Scanning the entire image is computationally prohibitive for real-time tracking.  Only the 
detection window or patch is used.  In this example, an 8x8 cell (64 pixels) is reduced to a string 
of nine values (magnitude and direction).  This significantly reduces the dimensionality of its 
feature vector.   

 



Kalman Filter Analysis 
The Kalman Filter (KF) [46] is a linear optimum state estimator for Gaussian dynamic systems 
which yields the smallest expected mean-squared error.  The performance of the KF degrades 
in the presence of non-Gaussian noise that nevertheless is present in many real-world 
scenarios.   In traditional applications using the Kalman filter, state variables are estimated with 
assumed values of process and measurement noise.  However, the utility of the standard 
Kalman filter degrades when the statistical noise model diverges from the environment.  In 
real-time object tracking, a priori models are difficult to estimate for real systems.  Over time, 
the errors between Kalman estimates and actual values can diverge, becoming unstable when 
the rate of convergence is slow.  Performance of the Kalman filter is highly dependent on its 
predefined model. 

For use of the Kalman filter to track moving objects, a dynamic model of the object motion is 
required.  We use a model that assumes constant velocity (CV) during the sampling interval.  
This model is used extensively due to its simplicity and effectiveness.  Disturbances to a 
constant velocity motion model occur when the object unexpectedly is subject to random 
impulse noise.  This modelled noise (𝜐𝜐k)  affects performance of the Kalman filter when it varies 
from the system state estimation.  

Noise statistics for a tracked object may also be time variant.  In real environments, objects may 
have different trajectories with various degrees of acceleration.  This novel proposal does not 
restrict the level of noise to being Gaussian or constant.  To ensure convergence and minimize 
the impact of random non-Gaussian noise used in the estimates, a real-time adaptive Kalman 
filter is proposed. 

Review of Kalman Filter 
Kalman equations are shown below.  The Kalman Model indicates the update state equation for 
the next object position based on the object’s prior state, prior measurement and process 
noise.  This state-space model contains a pair of equations for state and observation.  The 
model parameters used to estimate object position are generally not known in advance, nor are 
they necessarily static. 

Kalman Model 
 
The state equations for the environments are described in equations 6-7.     
 

 𝑥𝑥𝑘𝑘  =   𝐴𝐴𝑥𝑥𝑘𝑘−1  + 𝜔𝜔𝑘𝑘 6 
where 𝜔𝜔𝑘𝑘 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑁𝑁(0,𝑄𝑄). 

𝑄𝑄 = 𝐸𝐸[𝜔𝜔𝑘𝑘 𝜔𝜔𝑘𝑘
𝑇𝑇] , the estimation error covariance matrix. 

 

 



 𝑍𝑍𝑘𝑘  =   𝐻𝐻𝑥𝑥𝑘𝑘    +  𝜐𝜐𝑘𝑘 7 
Where  𝜐𝜐𝑘𝑘  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑁𝑁(0,𝑅𝑅) 

𝑅𝑅 = 𝐸𝐸[𝜐𝜐𝑘𝑘  𝜐𝜐𝑘𝑘𝑇𝑇], the measurement noise covariance matrix 

 

𝑥𝑥𝑘𝑘 is the state vector 
A   is the state transition matrix from the state time k-1 to the state at time k  
 

In the model 𝑍𝑍𝑘𝑘 is the actual measurement of the object at the discreet time index k, H is an m 
x n matrix called the observation transition matrix.  H is the connection between state vector 
and measurement vector.  In this instance, velocity is not measured so is removed from the 
measurement model.  H is assumed to be time invariant.      

 

Kalman Equations 
 

 𝑥𝑥𝑘𝑘  =   𝐴𝐴𝑥𝑥𝑘𝑘−1 8 
 

 𝑃𝑃𝑘𝑘 = 𝐴𝐴 × 𝑃𝑃𝑘𝑘−1 × 𝐴𝐴𝑇𝑇 +  𝑄𝑄       9 
 

 𝐾𝐾𝑘𝑘 =  𝑃𝑃𝑘𝑘𝐻𝐻𝑇𝑇 (𝐻𝐻𝑃𝑃𝑘𝑘𝐻𝐻𝑇𝑇  +  𝑅𝑅) -1 10 
 

 𝑥𝑥𝑘𝑘 = 𝑥𝑥k−1 + 𝐾𝐾𝑘𝑘(𝑍𝑍𝑘𝑘 − 𝐻𝐻𝑥𝑥𝑘𝑘−1) 11 
 

 𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑃𝑃𝑘𝑘 12 
 

 

 

𝑃𝑃𝑘𝑘 is the covariance error matrix at time k.  𝑃𝑃𝑘𝑘 is defined as the estimated error 𝐸𝐸[𝑒𝑒𝑘𝑘 𝑒𝑒𝑘𝑘𝑇𝑇] where    
𝑒𝑒𝑘𝑘 = 𝑥𝑥𝑘𝑘  −  𝑥𝑥𝑘𝑘_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎     

The state transition matrix A, process noise covariance Q and measurement noise covariance R 
are each initialized prior to tracking.   

 
Kalman Filter 
 
The Kalman filter is an optimal estimator whereby it utilizes uncertain observations to infer 
parameters of interest.  A basic assumption in using the filter is that environmental noise is 



Gaussian.  The filter then minimizes the mean square error of parameter estimates.    For linear 
systems where there is uncertainty in the simulation model and measurements, the Kalman 
filter minimizes the error by a continuous update process.   

The algorithm works in a two-step process that includes both prediction and measurement 
update.  A weighted average is used for measurement estimates with weighting being higher 
based on estimates that have a higher certainty.  As new information arrives, each prediction is 
updated. 

The Kalman filter is readily used for real-time processing, an essential feature for our tracking 
application.  The recursive nature of the Kalman filter minimizes computational overhead.  
There is no need to store all previous measurements to compute future estimates. 

In real-world applications, noise impediments in the environment may not be Gaussian.  
Performance of the Kalman filter can also be negatively affected by sudden changes in 
movement, occlusions and other changes in the environment.  In some cases, the Kalman filter 
can diverge when estimates sufficiently diverge from the expected model.    

In using the information gained from the HOG analysis, we inform the Kalman filter about 
changes in the environment in a statistical sense.  Confidence derived from the HOG object 
estimation is used to refine the Kalman model to update the measurement noise estimation.  
This increases the probability that the Kalman tracker error is minimized. 

The effects of divergence on the Kalman filter when noise variances are incorrectly estimated 
has been explored by Guo in the 2018 paper “Tracking Analysis and Improvement of Broadband 
Kalman Filter using the Two-Echo-Path Model as a Rapid Tunnel”.  Simulation results are 
demonstrated where the model is misaligned from the environment. 
 
 

     

HOG Descriptor Analysis 
In this section the HOG response matrix is computed for each frame for various videos in the 
VOT14 database.  The maximum HOG response is used as the estimate for the most probable 
object position.  The confidence that the estimate is correct is determined by the magnitude of 
maximum HOG response.   

In the video Doll below, the target is moved in both in-plane and  out-of-plane rotations.  The 
target is also subject to scale variations and occlusions.  Two sample frame images are shown to 
illustrate the image where tracking is accurate and again when tracking errors are present.    
See Figure 5  and Figure 6.   

 



      

 

    

 
                      FIGURE 5 - DOLL VIDEO FRAME 1                          

 
                         FIGURE 6 - DOLL VIDEO FRAME 3760 

 

         

 

The  HOG maximum response across all frames in the video is plotted (see Figure 7) .   The 
maximum HOG response (shown in blue) deteriorates rapidly near frame 3750.  This 
corresponds to a significant mismatch between the HOG position estimate and ground truth 
(labelled HOG Position Error in the plot).  The position errors are shown in red while the Y-axis 
is located to the right of the plot.  These errors are calculated by computing the RMS distance 
between the HOG positon estimate and the position provided by ground truth.  Errors in this 
instance stem from scale variation and blur.  These impediments can be clearly seen at frame 
3750.  Figure 8 is a zoomed-in version of Figure 7, so that the change in maximum HOG 
response can be more clearly displayed. 
 



         

FIGURE 7 - DOLL VIDEO HOG RESPONSE VS RMS POSITION ERROR (ALL FRAMES). 
 

            

FIGURE 8 - ZOOMED-IN VERSION SHOWING FRAMES 3600 THROUGH 3800 ONLY. 

 

The relationship between the maximum HOG response and position estimate error is further 
illustrated by viewing scatter plots (maximum HOG response vs RMS error).  See Figure 9.  
Errors in the individual X and Y directions are shown in the middle and right plots.  Here the Doll 
video is used again to examine the relationship between the maximum HOG response error 
looking at position errors in the horizontal (X) and vertical (Y) directions individually as well for 
the RSM error (shown to the left). 

 



 

FIGURE 9 - DOLL VIDEO - POSITION ESTIMATE ERRORS VS HOG MAXIMUM RESPONSE. 

 

 

The scatter plots clearly illustrate the probability of large errors when the maximum HOG 
response is less than 0.3, while having a low probability of error when above 0.5.  Between 
these two values, the error is more variable but well behaved (< 20-25 pixels). 

Scatter plots using other video examples are shown.  For reference, the first frame of the liquor 
video is shown in Figure 10.  Scatter plots for maximum HOG response vs X-direction, Y-
direction and RMS errors are shown Figure 11, Figure 12 and Figure 13 in respectively. 
 

 

FIGURE 10 - LIQUOR VIDEO FRAME 
 



 
  FIGURE 11 - LIQUOR VIDEO POSITION ERROR PLOT (X-
DIRECTION) 

 
  FIGURE 12 - LIQUOR VIDEO POSITION ERROR PLOT  (Y-
DIRECTION) 
 

 
FIGURE 13 - LIQUOR VIDEO POSITION ERROR PLOT (RMS) 

 

 

             

 
It can be seen that errors tend to increase significantly as the maximum HOG response 
measures less than 0.3. 

An additional example is shown below in the ‘Soccer’ video.  Positioning errors again increase 
rapidly as the HOG maximum response falls below 0.3.  Figure 14  is the first frame from the 
soccer video.  Figure 15, Figure 16 and Figure 17 are scatter plots for the maximum HOG 
response vs error in the X direction, Y direction and RMS respectively.  

 



 

FIGURE 14 - SOCCER VIDEO IMAGE FRAME 



 
 

 
    FIGURE 15 - X-DIRECTION HOG RESPONSE VS POSITION      
ERROR 

 
    FIGURE 16 - Y-DIRECTION HOG RESPONSE VS POSITION 
ERROR 
 

 
FIGURE 17 - RMS HOG RESPONSE VS POSITION ERROR 

 

 

To further validate the relationship between position error and maximum HOG response, 
simulations for 30 videos selected from the VOT14 database and then compiled into histograms 
comparing the maximum HOG response to the RSM error.  Altogether about 20,000 video 
frames were analyzed.  The results of this experiment are shown below showing analysis in the 



X and Y directions as well as RMS, ie   (sqrt(X2 + Y2)).   See Figure 18, Figure 19 and Figure 20. 
 

 
                  FIGURE 18 - MAX HOG VS X-DIRECTION ERROR 

 
                FIGURE 19 - MAX HOG VS Y-DIRECTION ERROR 
 

 
                                                                                 FIGURE 20 - MAX HOG VS RMS ERROR 

 

 



Results and Discussion 
 
Within the Kalman system, the model used for the measurement analysis is viewed in a 
statistical sense.  It is probabilistically estimating motion state and predicting object position.  
The statistical information used for determining object location calculated by HOG can be 
interpreted as a priori confidence in object position.  System state is simultaneously updated to 
account for perturbations and non-linear outliers that may occur in a random fashion. 

To develop an optimal correction factor for the Kalman measurement noise estimate,  
measurements from the 30 videos in the VOT14 database were compiled.  In total, 40,000 
measurements were used (20,000 measurements in each of the X and Y directions).  Twenty 
bins were used for each range of maximum HOG response.  The standard deviations 
corresponding to each bin were then plotted against the bin range.  The RMS values for each 
standard deviation bin are shown in Figure 21.  A curve fitting algorithm (5th order polynomial 
fit)  for each standard deviation measurement was calculated.  This is shown in the line plot in 
Figure 21. 
 

 

FIGURE 21 - ANALYSIS OF STANDARD DEVIATIONS BASED ON 20,000 FRAMES 

 
 
Tracking Improvements 
 
The values in the polynomial curve are then used to adjust the Kalman filter estimated 
measurement error based on the maximum HOG response calculated for each frame.   

An artificial occlusion is first introduced in the ‘basketball’ video in Figure 22.  The occlusion is 
constructed using a solid color which in effect reduces the gradient changes to zero.  Two sets 



of frames are shown, one using only the HOG descriptor for tracking, while the second set 
shows the effect by using an informed Kalman filter with measurement noise correction factor 
for tracking assist. 

 

FIGURE 22 - TRACKING ANALYSIS COMPARING HOG ONLY WITH ADAPTIVE KALMAN FILTERING 

 

Several bounding boxes are shown.  The bounding boxes include the following. 

• Ground truth (red) – provided by the VOT14 database 
• Patch (maroon) – detection patch window covers the area used for searching for the 

target.   
• HOG estimation (green) – most probable object location without using Kalman filter 
• Kalman estimation (yellow dashed) – object position estimated provide by Kalman filter 

using HOG measurement information    

These windows with corresponding colors will be used again in subsequent video frames. 

It is shown in the third frame set for each video sequence from Figure 22 that using the Kalman 
filter enables the detector to maintain track.  Surface plots were also constructed comparing 
the HOG response both before and during the occlusion. The relatively sharp peak for the signal 
is indicative of a higher confidence level that the tracking error is minimal.  See Figure 23 and 
Figure 24.  Conversely, the errors encountered during the occlusion are much larger.   

 



 

 

 

 
FIGURE 23 - SURFACE PLOT SHOWING HIGH 
MEASUREMENT CONFIDENCE 

 
                    FIGURE 24 - SURFACE PLOT OF OCCLUDED FRAME 

 

 

       

The adaptive Kalman approach is demonstrated used several video clips provided by the VOT14 
database.  Results are shown comparing the use of HOG-only for object track with the use of a 
Kalman filter.  In the first sequence below, several frames of the Jogging video are shown.  
Noise impediments outlined in VOT14 include deformation, occlusion and out-of-plane 
rotation.  The occlusion event shown by the jogger running behind a light pole is examined 
here. 

Figure 25 below shows a video sequence using HOG only for object tracking.  The occlusion 
causes loss of track starting at frame 73.  Once the object leaves the patch window, tracking 
cannot be recovered without using additional methods for maintaining track.  Figure 26 shows 
the same video sequence, but this time using a Kalman filter to assist in tracking.  No adaptive 
scaling of the Kalman model is implemented.  Track is again lost as shown in Figure 26. 

 

 

 

 



 
FIGURE 25 – JOGGING: USING HOG ONLY FOR OBJECT TRACKING (FRAMES 68, 71, 73, 86) 

 

 
FIGURE 26 - JOGGING:  HOG+NON-ADAPTIVE KALMAN FILTER TRACKING (FRAMES 68, 71, 73, 86). 

 

In this next sequence (Figure 27), HOG is assisted again using a Kalman filter.  However, this 
time the confidence factor is employed to update the Kalman model with information obtained 
by the HOG gradient measurements.  Additional frames are shown to better illustrate the 
changes in the Kalman position estimation.  As shown here, the Kalman filter is now able to 
maintain track during and after the occlusion event. 

 

 

FIGURE 27 - JOGGING SEQUENCE USING HOG TO INFORM AN ADAPTIVE KALMAN FILTER. 

 



A second video ‘football1’  was evaluated.  Noise impediments in this video series include 
partial occlusions, in-plane rotations, out-of-plane rotations, background clutter and blur.  In 
Figure 28 a frame sequence using HOG-only for tracking is shown.   In the final frame of the 
video (frame 174), track is again lost when HOG-only is used.  Using a Kalman filter without a 
scaling factor also resulted in a loss of track.  This is shown in Figure 29.  In each case, the 
ground truth position (red rectangle) is located outside the patch rectangle (maroon).  In this 
scenario, track cannot be re-established. 

In Figure 30, the adaptive Kalman filter is used.  In the second row, the Kalman estimation aided 
with the knowledge of the HOG maximum response is still located within the patch, thus able to 
maintain track.  Additional frames are shown in the sequence to provide a better view of the 
tracking process.  

 

 

FIGURE 28 - 'FOOTBALL' FRAME SEQUENCE USING HOG ONLY (FRAMES 154, 172, 173, 174). 

 

FIGURE 29 - 'FOOTBALL' FRAMES WITH HOG+ NON-ADAPTIVE KALMAN FILTER (FRAMES 154, 172, 173, 174). 



 

 

FIGURE 30 - 'FOOTBALL' FRAMES:  HOG WITH ADAPTIVE KALMAN FILTER (ADDITIONAL FRAMES INCLUDED). 

 

Conclusion 
 
This paper has described the use of a tracking prediction algorithm for adaptively updating a 
Kalman filter model based on information derived from the HOG correlation measurements.  
The method for updating the filter includes a quantitative method for determining confidence 
in the HOG object position estimation.  This information is known a priori to implementing the 
Kalman filter.  This overcomes some of the issues using Bayesian methods where prior 
measurements (such as Kalman gain) as a means to predicting future events.  Also, using our 
methodology imparts only a minor efficiency penalty with no impact for real-time tracking.  
Adaptively scaling the Kalman model also is object appearance agnostic.  The method works 
well for not only people tracking, but also for other objects in motion as well.     

Areas for future research might include using this method with off-line training models, 
increasing the patch detection window size when measurement confidence is low and adjusting 
measurement confidence downwards when multiple objects of similar appearance are located 
within the patch window.   

Using off-line models offer promise given current research into system model updates using 
methods that would not inhibit real-time tracking.  These methods work best when there is a 
priori knowledge as to the type of object that will be tracked. 
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